The researchers, Guo-Zhen Wang, et al., from National Chiao Tung University in Taiwan, have published a paper on the 3D Air-Touch system in a recent issue of the IEEE's Journal of Display Technology.
"The 3D Air-Touch system in mobile devices can offer non-contact finger detection and limited viewpoint for operating on a floating image, which can be applied to 3D games, interactive digital signage and so on," Wang told Phys.org. "Although current technology still has some issues, such as yield rate, sensor uniformity and so on, we predict that this technology could become available in the near future."
Because of the small size and portable nature of mobile devices, implementing a 3D system on these devices is different from 3D systems used on TVs and other large screens. Often, large 3D systems require either additional bulky devices or cameras for motion detection. For mobile systems, these additional devices would be inconvenient and the cameras have a limited field of view for detecting objects in close proximity to the display. Some proposed 3D systems for mobile devices use sensors near the screen, but these systems require bright environmental lighting, so they don't work well in dark conditions.
Optical sensors that are embedded
in the mobile device detect finger movement. The depth range is
currently 3 cm. Credit: Wang, et al. ©2013 IEEE
The researchers explain that the algorithm for calculating the 3-axis (x, y, z) position of the fingertip is less complex than that used for image processing, allowing for rapid real-time calculations. First, the infrared backlight and the optical sensors are used to determine the 2D (x, y) position of the fingertip. Then to calculate the depth of the fingertip, the angular illuminators emit infrared light at different tilt angles. An analysis of the accumulated intensity at different regions provides the scanning angle with maximum reflectance, resulting in the 3D location of the fingertip.
(a) To calculate the 2-axis (x and
y) positions of a fingertip, the IR backlight is reflected by the
fingertip. (b) To calculate the depth (z) of the fingertip, the system
uses IR scanning devices on opposite sides of the display panel. Credit:
Wang, et al. ©2013 IEEE
In the future, the 3D touch interface might also be extended from single-touch to multi-touch functionality, which could enable more applications. However, multi-touch functionality will require overcoming the occlusion effect, which occurs when one fingertip blocks the second fingertip so that the sensors cannot distinguish between the two. The researchers also plan to work on 3D Air-gesture operation for making 3D signatures in mobile devices.
No comments:
Post a Comment